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Streaming Flow Induced by Two Oscillating Circular Cylinders

Yong Kweon Suh*
(Received May 2, 1995)

Two-dimensional Stokes flow generated by an acoustic streaming around two circular

cylinders were studied. A series solution method is developed to obtain both the potential and

Stokes flows. Calculation results for two equal cylinders show that the streaming flow pattern

undergoes six bifurcations with the direction of the oscillatory motion of the fluid when two

bodies are at moderate or large distance. When they come closer, the pattern becomes more

complicated especially in the gap region. The present solution method can be easily extended to

an arbitrary arrangement of multiple circular cylinders with different radii.
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1. Introduction

It is well known that, when a solid body

performs small-amplitude, high-frequency oscilla­

tion in a viscous fluid that is otherwise at rest, the

fluctuating motion of the body is felt only in the

thin 'Stokes' layer developed near the body sur­

face, and the outside region is governed by a

steady streaming flow induced by the nonlinear

effeclt in the layer. Although the streaming flow is

weaker than the the flucuating one, it plays a

dominant role in migration of particles (Bat­

chelor, 1967) and heat/mass transfer (Krasuk and

Smithl963, Davidson 1973, Haddon and Riley

1981). Fortunately, the velocity at the edge of the

layer that drives the outside flow can be obtained
without actually solving the Stokes-layer equa­

tiom.. We only need to solve the potential-flow

problem constituted by a uniform flow past the

body along the direction of oscillation. It is this

feature that intrigues the fluid dynamicist. A nice

introduction and survey of the early literature has

been given by Riley (1967).

The historically diversified works on the sub­

ject may be categorized by the three factors; first,

the number of bodies and their arrangement,

second, the shape of the body, and third, the order
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of the streaming Reynolds number, R s (R s is

based on the streaming velocity at the body

surface). The earliest, fundamental model, that

gives the simplest closed form solution, is a cir­

cular cylinder in the limit of low Rs . This model,

then, has been extended to the moderate and large

R s . It is now well known that increase of R s in

the model can even change the flow direction in

the far field (Stuart, 1966). Recently, there have

been some investigations for bodies which take

other shapes. Pattani and Olson (1987) obtained

numerical solutions for the square and Joukows­

kii profiles at R s < 4. Kim and Troesch (1989)

also obtained numerical solutions for the square

and asymmetrical bodies at R, < 100. Their

results imply that the noncircular shape can gen­

erate complex flow patterns. The now pattern can

also be diversified by the number of bodies and

their arrangement. Two-circular-cylinder problem

in the low R s limit has been solved by Za­

pryanov, Kozhoukharova and Iordanova (1988)

for two special cases. It was shown that depend­

ing on the cylinder size difference and the dis­
tance, the now pattern can change significantly. A

cascade of circular cylinders at R s < 100 has been
investigated by Van, Ingham and Morton (1993).

It was observed that a breakdown of symmetry in
the streaming flow occurs at the critical value of
R s between 8 and 9.

In this work, streaming now around two cir-
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cular cylinders in the low R s limit is investigated.

As mentioned above, Zapryanov, Kozhoukhar­

ova and Iordanova (1988) have studied the same

problem, but their solution methods are applica­

ble only to two special cases; one, two different

cylinders oscillating parallel to the plane contain­

ing their axes, and two, the equal cylinders oscil­

lating perpendicular to the plane containing their

axes. In this work, methods are developed to

consider the most general cases in which both the

cylinder size difference and the direction of oscil­

lation are varied without any restriction.

The stream function for both the potential and

Stokes flow is represented basically by the sum of

two functions, each of which uses the separate

coordinate system. Method of successive improve­

ment is used to obtain the converged solutions.

2. Formulation of the Problem

y

direction of
the fluid motion

Fig. 1 Configuration of arrangement of two circular
cylinders subject to a two-dimensional peri­
odic flow, and two separate coordinate
systems.

where Ijf is the 0 (E) nondimensional stream

function and \74 is the biharmonic operator.

Hereinafter all the quantities are dimensionless

otherwise specified. As shown in Fig. I, the

Cartesian coordinate system (x,y) has its origin

at the center of the upper cylinder.

(3a)

(3b)

~Ijf =,0os '
oljf 3 dup
7F;Z=' Us= -4up ds~'

where sand n are coordinates along and normal

to the body surface, and Up and Us are the

potential and streaming velocities at the body

surface (e.g. Riley, 1967). The boundary condi­

tions at infinity are rather subtle by the following

reasons. For the two-dimensional, unbounded

flow, two paradoxes are known. The Stokes

paradox states that there is no solution to the

biharmonic equation that satisfies both the noslip

condition on an isolated-body surface and a

uniform flow at infinity. The Jeffery paradox

(Jeffery, 1922) states that the locally generated

flow around isolated bodies can generate a unifor­

m flow at infinity. These simply imply that

specifying arbitray boundary conditions at in­

finity may lead to an ill-posed boundary-value

problem. In view of this, we simply require the

slowest possible flow at infinity (Smith, 1990).

Three parameters that determine the flow char­

acteristics are; rjJ, angle of the direction of oscilla­

tion, d, distance between two cylinders, and p,

The boundary conditions at the body surface

can be written as

( I)

(2)\741jf=0,

where a is the radius of the larger cylinder and IJ

the kinematic viscosity of the fluid. These can be

derived by taking a, 1/wand Ua as the length,

time and velocity scales. E represents the am­

plitude of oscillation relative to a and M 2 the

diffus ion time scale 0 (a 2
/ IJ) relative to the time

scale of oscillation 0 (l/w). As stated in §l, we

assume ~.z: 1, M 2 :;> I, and Rs.z: I.
Applying the asymptotic perturbation techni­

ques then gives the nondimensional governing

equations for the 0 Cd streaming flow as follows.

As usual, we fix the coordinates on the bodies

and r,~gard the fluid as oscillating with velocity

Ua sinwt at infinity. The traditional nondimen­

sional numbers, which characterize the governing

equatl.Ons and the corresponding flow are;

_ Uo M2 __wa2 R _ UJ
E- , - 's- ,

wa IJ WIJ
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radius of the lower cylinder (p <:;:, I).

(10)

(II)

(l2a)

Then, the impermeable condition at the upper

surface requires

by substituting into (7c) ~ = ~o and if = ifo

obtained by (5a) and (5b) as follows.

~o=[~]<=o=+ln (I+d 2 +2dsinTj), (8a)

ifo=[ if],=o=cos- l (e-,-ocosTj). (8b)

With alk and Plh as the Fourier constants, 7/!1O (Tj)
can be written as

where 1300 is the Fourier constant of the constant

term of 7/!01 ( if), which is 7/!o (.;, Tj) evaluated at the

lower surface. The potential velocity Up at the

upper surface, Upo, is obtained by the following

formula.

Doo = -1310'
COl = -cos¢- all' DOl =sin¢ -1311>

COk=-alk' Dok=-plk (k:?2).

Similar process applies in obtaining Ctk and Dlk .

This process is repeated until converged values

are obtained. The iteration scheme is conjectured

to be stable since all the modes (except those of k
=0) in 7/!o and 7/!l decrease exponentially with

distance from the bodies.

The value of 7/! at the upper surface is set zero,

and that at the lower, 7/!lw is given by

where hl=hl(Tj)=e{O is the size factor of the

lower coordinate system at the upper surface. We

can obtain UPl ( if) for the lower surface from the

similar formula.

The surface boundary conditions (3) for the

Stokes problem are then

(4)

(7c)

(7b)

(5a)

(5b)

7/!1 = L; (Cue- ki sink if
k~O

+ Dw -k<-cosk if),

e<cos Tj = e <-cos if '

e<sinTj=e<-sin if - d

where z=.r+iy, z=.i +i y , w=';+iTj and iv=
~ + i if are complex coordinates and the relation

z=z-id, or

3. Potential Flow Solution
and the Surface Streaming Velocity

holds.

The potential flow can be written as follows.

7/!=7/!= (~,Tj)+7/!o (~,Tj)+7/!1 (~,if), (6)

7/!==cos¢e<sinTj -sin¢e<cosTj, (7a)

7/!0= L; (Coke-k{sinkTj + DOke-k<coskTj),
k~O

We first need to solve the potential flow prob­

lem constituted by a uniform flow past the two

cylinders along the same direction as the oscil­

latory motion of the fluid. We may use the

bipolar coordinate system in view of the body

arrangement. However, as we shall discuss in §4,

this coordinate system is not suitable for the

Stokes flow solution. So, to be consistent with the

later development, we use two separate coor­

dinate systems Cr,y) and Ci,y) each of which

has its origin at the center of each cylinder. These

coordinates are then transformed to (.;, Tj) and

( ~, if) as follows.

where 7/!= represents the flow at infinity, and COk'

Do .. Ctk and Dlk are constants to be determined.

The constants are determined so as 7/! satisfies the

impermeable condition at the surfaces. The meth­

od of successive improvement is used. That is,

when COk and DOk are to be obtained, C lk and

Dll< are given and vice versa. We illustrate the

process of obtaining COk and Dok . First, to impose

the impermeable condition at the upper surface

we must obtain 7/!1O (Tj), which is 7/!1 (~, if)

e\aluated at the upper surface. This is established
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00

= ~ (Eoksin k7j +F'okcosk7j),
k=l

( 12b) (14)

( 13a)

for the upper cylinder, and

IF =const. at ¢ = ¢ h

[aIFJ = ~2(AH~I)a¢ ~"~, 8 d 7j

= ~ (Elksinkij +FlkcosJi:ij), (13b)
k~l

for th,~ lower cylinder, where ¢l =In (p) is value

of ¢ at the lower surface, and the constants E ok ,

Fok , Elk and Flk are also obtained by the Fourier

transform. It should be noted here that the series
start from the mode k = I.

The series are truncated after k = K. To obtain

the Fourier constants, the interval O:<=::7j:<=::27[ is

divided into j segments, each having the length

!:l7j = 27[/ j, and then the integration is performed
by using the simplest scheme,

1
2rr J-I

o g (7j )d7j =fj gj!:l7j,

for any integrand function g (7j).

4. Solution of the Streaming Flow

Choosing a suitable coordinate system is cru­

cial in the whole solution techniques. The bipolar

coordinate system is apparently convenient in

imposing the surface conditions and the subse­

quent solution process. In the beginning of this

study, therefore, the method of Zapryanov, Koz­

houkharova and lordanova (1988) based on the

bipolar coordinates has been applied. However, it

turned out that except for the special cases, that

are treated by them, the far field flow velocity

grows like 0 (Izl). Such an unrealistic solution is

attributed to the improper choice of the coordi­

nate system or the impoper transform of IF (i .e.

the eq uation shown at the lowest line of page 210

of the paper).
In this work, methods that give plausible solu­

tions are developed using two separate coordinate

systems as defined in §3. In the transformed

planes, the governing Eg. (2) reads

for the upper and lower systems, respectively,

where \76 and \71 are Laplacian operators for each
system. We seek the solution in the form

where If!~. is a constant.

Each of 1F0 and IFI is considered to be the sum
of 10k (~)eik'! and Ilk (¢ )eikr,-, respectively, over k

20, where 10k (~) (and similarly flk (n) is a
linear combination of four basis functions which
are

{1,~,eU,~eU} for k=O,
{e-",e',~e",e3(,} for k= I,
{e-k",eI2-k)",ek",elk+2)(,} for k 2 2.

If the model were composed of a single cylinder

with the velocity specified at the surface, then it is

abrupt to select the first two basis functions for

every Ji:. In this case, the far field flow velocity is

at most 0 (I) which is satisfactory. For the

multiple cylinders, the same rule applies except

for k = I.

The reason lies in the unique feature of the

terms with the bases e" and e [for k = I. Consider,

for instance, the modes 1F0=Poe[cos7j and IFI=PI
e"cos ij, where Po and PI are arbitrary constants
supposed for the moment to be independently

determinative. By the transformation (5a), the

resultant total mode can be written as IF = 1F0
+ IJf.. = (Po+PI) e"cos7j in terms of the upper
coordinates and IF= (Po+ PI) e[cos Fj in terms of

the lower coordinates. Thus the two constants

turned out to function as one in a combined form.

In the physical sense, this is due to the fact that

the terms with the bases e" and e'- generate a

'uniform' flow everywhere. Consequently, we are

left with {e-',e",e- ,,) as the bases for k= I. We

need one more basis function, which must be in a

combined form ~e"- ¢e r so as to minimize the

far field flow velocity; each separately generates

o (lnlzl) velocity at infinity, but after combined

o (I/lzl)·
Based on the above reasoning, we write 1F0 and

IJf.. as follows.
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+ ~J (POke(2-k)< + QOke~k<)sink7,l + (ROk e(2-kl< + SOke-k<)COSk7,ll

IJfi (~,if)=QlO~ + (-Tc~e"-+Qlle-r)sinif+ (-Uc~er+Slle-r)cosif

+~J (Plke(2-klr+Qlke~k<-)sinkif+ (Rlke(2-klr+Slke-kr)coskif l
(l6a)

(l6b)

where all the Roman capital letters denote the

unknown cosntants. The method of successive

improvement is applied to obtain the constants.

The method is basically similar to to that used in

§3 except for k= I; the constants for k= I are

obtained in a partly implicit manner at each

iteration step as will be described below.

First, we need to formulate lJfio (7,1), which is IJfI
(~, if) evaluated at the upper surface. Suppose

that ~oerosin ifo and ~oerocos ifo in (16b) are
decomposed as

~oerosin ifo= fIssin 7,1 + fIeCOSlJ

+ all the other modes,

~De <"cos ifo = /llssin 7,1 + /llecos lJ

+ all the other modes,

where fIs' fIC' /lIs and /lIe are constants. These
terms are to be multiplied by - Te (in the first

equation) and - Ue (in the second). But we

consider the constants for sin7,l and coslJ as unkn­

own and all the others as given; this is a key

element for the numerical stability. (Similarly, in

formulation of IJfoI (if), Te and Ue multiplying

the modes of sin if and cos if are considered as

unknown.) Then we can write

1Jf1O (lJ) = - Te (fIssin lJ + fIeCOS 7,1)

- Ue (/llssin7,l+ /lieCOSlJ)

+ ~J alksin k7,l + /3lkcOSk7,ll (17)

where the Fourier constants alk and /3lk differ
from those used in §3. The impermeable condi­

tion (12a) then requires

lJfe= - (310' (l8a)

- fIsTe-/llsUe+ P e+ QOI= -alb (18b)

- fIe Te-/lleUe+ R e+ SOl = - (3lb (18c)
POk+QOk=-alk (k~2), (18d)

R Ok +SOk =-/3lk (k~2). (l8e)

To impose the velocity condition at the upper

surface, we first need to formulate V[{h the tan­

gential component of the velocity at the upper
surface generated by 1Jf1 • It can be shown that

I [alJfI ( _ )VIO=-rz;- - a~ cos 7,1 - 7,1

alJfI . (- )]
+ aif Sill 7,1 - 7,1 ~o~o. "~",

The same idea as that used in Eg. (17) is applied

to write this as

VlO = Te (['lssinlJ+ ['leCOS7,l)

+ Uc (/l'lssinlJ + /l'leCOS7,l)

+ ~J Ilksin k7,l + OlkCOSk7,ll

where ['IS' ['Ie' /l'1s, /l'IC' Ilk and Oik are con­
stants. Then the condition (l2b) requires

QoO=OIO' (l9a)

(1- ['IS) Te-/l'lsUe+ P e- QOl
= III -- EOb (l9b)

-['leTe+ (I-/l'IJUe+Re-SOI

=oll-FoI , (l9c)

(2- k)POk - kQOk

= Ilk- EOk (k~2), (l9d)

(2-k)Rok -kSok

=Olk-Fok (k~2). (1ge)

We can obtain, for k ~ 2, POk and QOk from Eqs.

(l8d) and (l9d), and ROk and SDk from Eqs. (l8e)

and (1ge). A similar procedure applies in obtain­

ing P lk , Qlk' R lk and Slk for k ~ 2, and the
formula for these will not be presented.

The constants TC' Ue, PC' RC' QOl and SOl
should be obtained with further conditions at the

lower surface. A similar procedure is followed to

obtain

IJflw = QlO ~ + /300+ lJfe - Ped, (20a)
I

(- P~I+ [os) T e+ /losUe+ pPC+pQIl

=-aOb (20b)
I

[oeTe+ (-P~I+/loe)Uc+pRe+-Sllp

=-/30b (20c)

by imposing the condition (14a), and

(2Ia)
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(I + ~1+ r'os) T e+ f./osVc -- Pc +-LrQII
p

=o-YoI+Elb (2Ib)

r'oe Te+ (I + ~1+ J.L'ocJ Vc -- Rc+J"SII
P

= ~ Gell +F 11 , (2Ic)

by imposing (14b). If!lw in Eq. (20a) denotes the

value of If! at the lower surface. Now eight linear

Eqs. (18b), (18c), (19b), (19c), (20b), (20c), (2Ib)

and (2Ic) are solved to obtain eight unknowns

Tn VI" Pc, Re, QOI' SOh Q11 and 5 11 ,
The iteration procedure is summarized as fol­

lows.

(i) Set all the constants in Eqs. (16a) and (l6b)

zero.

(ii) Compute the Fourier constants aDO, "', Go.,

alO, "', GIO'

(iii) Obtain Qoo by Eq. (l9a) and QlO by Eq.

(2la).

(iv) Solve Eqs. (18d) and (l9d) for Poo and Qoo,

and Eqs. (18e) and (lge) for Roo and 50o , and

similarly solve for P IO , Qlh' R lh and Slk (22).

(v) Solve 8 linear equations for Tn Vc, "',Sl1 as
described above.

(vi) Repeat (ii) to (v) until all the values conver­

ge.

The truncation of the series and the integration

scheme used in (ii) are as described in the last

part of §3.

5. The Numerical Results

The effect of the series truncation, that is K,

and the effect of the number of segments in the

integration, that is j, are first studied. By a

physical intuition, we expect that as the cylinders

become closer K should be larger due to the

stronger interaction between the cylinders. It was

found that K=40 for d=2.3, 30 for 2.5, 20 for

3.0. 15 for 5.0 and 10 for 10.0 give the sufficiently

accurate results. For most cases, 1=0200 is also

found to be sufficient. The convergence becomes

slower as d decreases by the same reason. For all

cases presented in this paper, the number of itera­

tions needed is less than 100. The computation

time is negligibly small.

The potential flow solution obtained in this

study is found to be very close to that given in

terms of the bipolar coordinates (Morse and

Feshbach 1953), which -verifies the validity of the

present numerical schemes.

Figure 2 shows streaming flow patterns for p=

I (equal cylinders), d=5, and three values of ¢.

The pattern of ¢=OQ is much similar to that of ¢

= 90° except that the flow direction is opposite to

each other, and more importantly that the former

is a little stronger than the latter; such difference

in the flow strength may be explained from the

potential-flow configurations. We further note

that the streaming flow is the strongest at ¢=45°.

This can be explained by the fact that, while at

¢=oo or 90" the streaming flow driven by the

upper cylinder is interfered by that driven by the

lower, at ¢ ==45° each streaming flow is rather

augmented. The interference effect may be as­

sociated with the number of cells N c; we see that

(a) ¢=Oo (b) ¢=45°

Fig. 2 Streaming flow patterns for p = I, d = 5, and three values of ¢. The increment of the stream
function is 0.1.
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(a) ¢=Oo (b) ¢=45°

Fig. 3 Sketch of the conjectured flow patterns for ¢
=0° and 45° around the cascade of circular
cylinders arranged in a line.

interval 0°<::;¢<::;90°. Identification of flow patter­

ns like Fig. 4 is important e.g. in migration of

particles as stated in §I.

The flow pattern becomes more complicated in

the gap region as the cylinders come closer.

Figure 5 shows such variation for p= I, ¢=60°

and three values of d. We first note that there are

two small cells for d=2.8 (Fig. 5 (a» which do

Ij

N c=4 for ¢=oo and 90° and N c = I for ¢=45°.
We note a slight asymmetry pattern for ¢=45°
which originates of course from the potential flow

solution at small d; it is expected that the pattern

becomes more symmetrical at larger d.
We may now extend these results to the cascade

of circular cylinders, where infinite cylinders are

arranged in a line (Fig. 3). For ¢=oo or 90°, it is

conjectured that the four-cell pattern similar to

Fig. 2 (a) or (c) is repeated resulting in a very

weak flow in the far field (Fig. 3 (a»; the case of

¢=oo has been studied by Yan et al. (1993). For

¢=45°, it is also conjectured that the single-cell

pattern similar to Fig. 2 (b) is repeated resulting

in an almost uniform downward flow in the left

far-field and an almost uniform upward flow in

the right far-field (Fig. 3 (b». It is interesting to

note that such a far-field flow configuration is

qualititively similar to that observed by Yan et al.

(1993) for ¢=oo at R s >9.
We next investigate the bifurcation of flow

patterns with ¢ as the bifurcation parameter.

Here, a bifurcation sets in when the flow pattern

is qualititively changed with ¢. Figure 4 shows

eight flow patterns given by six bifurcations (Fig.

4 (b) and (c) are of the same pattern) in the

(a) ¢=O' (b) ¢=5' (c) ¢= 10' (d) ¢=20°

(e) ¢=50° (f) ¢=70° (g) ¢=80' (h) <£>=90°

Fig. 4 Bifurcations of the streaming flow patterns with the parameter ¢ varying from 0° to 90°.

The patterns (b) and (c) are representative of the paramatric domain 0°< <£>< 16.5'. The
pattern (d) is for 16.5'< ¢<29.0°, (e) for 29. 6°<¢66.8°, (f) for 66.8°<¢ 75.7', (g) for 75.7
0< ¢< 900.
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+
(a) d=2.8 (b) d=2.6 (c) d=2.3

Fig. 5 Streaming flow patterns in the gap region for ¢=600, and three small values of d. The

increment of the stream function is 0.02 except for 1f/==0.17 repre senting two small cells
in (a).

not e:xist at d=5.0 (Fig. 4 (e). These are more

pronounced as d decreases (Fig. 5 (b». This

phenomenon is due to two facts. First. distribu­

tion of the surface streaming velocity Us is more

local ized as d decreases; for instance Us in the

left-hand side becomes larger while that in the

right· hand side becomes smaller for the upper

cylinder. Second, decrease of d does not move the

two separating streamlines significantly, causing

the confined region more pinched in the middle.

We next note that two additional small cells

Fig. 6 A typical streamline pattern of the potential
flow when two cylinders are very close; d =

2.255, ¢ = 70". The increment of the stream
function is 0.0891.

appear at d = 2.6 (Fig. 5 (b» near the surface of

the cylinders. These cells become larger and stron­

ger at d=2.3 (Fig. 5 (c». Appearance of those

cells are attributed to a peculiar pattern in the

potential flow at small d values. Figure 6 shows

a typical streamline pattern of the potential flow.
We note that the passage between two separating

streamlines (including the body lines) undergoes

two more diverging-converging effects than the

one at moderate or large values of d. Addition of

two diverging-converging places yields four ad­

ditional stagnation points in the streaming flow

field at the cylinder surfaces, which in turn gives

rise to two additional cells. Growth of the two

cells then results in generation of two weak cells

(Fig. 5 (c».

We should note here two things for the case of

small d (such as Fig. 5 (c». Firstly, for the

classical asymptotic-expansion-method to be

valid, the ratio of the oscillation amplitude (Uo/

w) and the gap spacing (2a-d), or Uo/ w (2a-d),

must be small enough. This is severer than the

restriction c~ I as specified in the first paragraph

of §2. Secondly, we need more terms (larger K) in

the series for small d, and it is consistent with the

fact that, also in the discretizing method, the

convergence becomes slower at smaller d as

pointed out by one of the refrees from his exper­

ience in the related numerical computation.

6. Conclusions

A series solution method is developed in this
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study for two-dimensional low-Reynolds-number

flows around two circular cylinders of different
radii with arbitrary arrangement relative to the
direction of the oscillatory motion of the fluid. It

is abrupt to extend this idea to a group of cylin­
ders more than two.

Calculations for two equal cylinders show that
the streaming flow for ¢=45° is much stronger

than that for ¢=Oo or 90°. Bifurcation in the flow

pattern is studied with ¢ as the parameter. At
d = 5, six bifurcations take place. As two cylin­
ders come closer, the flow pattern in the gap
region becomes more complicated due to basi­
cally to emergence of two additional diverging­

converging flows between the separating stream­
lines in the potential flow field.

In the future, solutions for two cylinders with

different radii will be presented, and the case of
three and four cylinders will also be studied.
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